Hyaluronic acid induces osteopontin via the phosphatidylinositol 3-kinase/Akt pathway to enhance the motility of human glioma cells.
نویسندگان
چکیده
Hyaluronic acid (HA) binds to cell-surface receptors such as CD44, and seems to be involved in cell adhesion, motility, and tumor progression in brain. To identify gene expression changes that are initiated by HA, we explored human cytokine arrays in U87MG glioma cells and identified osteopontin, a secreted matrix protein, as a transcriptional target of HA. Interestingly, expression of osteopontin was induced by HA in glioma cells lacking functional PTEN, a tumor suppressor gene (U87MG, U251MG, and U373MG), but not in wild-type (wt)-PTEN-harboring cells (LN18 and LN428). To confirm the role of PTEN, adenoviral (Ad)-wt-PTEN was used to induce ectopic expression of wt-PTEN in U87MG cells, leading to reduced HA-mediated osteopontin induction. Reciprocally, transfection with dominant-negative Akt repressed HA-induced osteopontin expression. Furthermore, HA promoted the motility of glioma cells, and down-regulation of induced osteopontin activity via a neutralizing anti-osteopontin antibody repressed HA-induced motility in vitro. Together, these results strongly suggest that induction of osteopontin expression by HA is dependent on activation of the phosphatidylinositol 3-kinase/Akt pathway. Furthermore, our data indicate that PTEN can effectively modulate the expression of osteopontin, and HA-induced osteopontin plays an important role in the motility response induced by HA in human glioma cells.
منابع مشابه
Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملGrowth factor signaling induces metastasis genes in transformed cells: molecular connection between Akt kinase and osteopontin in breast cancer.
Malignant tumors are characterized by excessive growth, immortalization, and metastatic spread, whereas benign tumors do not express gene products that mediate invasion. The molecular basis for this difference is incompletely understood. We have screened signal transduction molecules associated with the epidermal growth factor (EGF) receptor and have identified constitutive phosphorylation, ind...
متن کاملCurcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway
Objective(s): The aim of this study was to investigate the effect of curcumin on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying potential mechanism.Materials and Methods: The tissue explant adherence method was used to isolate hPDLSCs. Flowcytometry, Alizarin Red staining and Oil Red ...
متن کاملOsteopontin increases heme oxygenase-1 expression and subsequently induces cell migration and invasion in glioma cells.
Malignant gliomas are associated with high morbidity and mortality because they are highly invasive into surrounding brain tissue, making complete surgical resection impossible. Osteopontin is abundantly expressed in the brain and is involved in cell adhesion, migration, and invasion. The aim of the present study was to investigate the mechanisms of glioma cell migration. Migration and invasion...
متن کاملThrombin induces expression of FGF-2 via activation of PI3K-Akt-Fra-1 signaling axis leading to DNA synthesis and motility in vascular smooth muscle cells.
To understand the mechanisms by which thrombin induces vascular smooth muscle cell (VSMC) DNA synthesis and motility, we have studied the role of phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR)-S6K1 signaling. Thrombin stimulated the phosphorylation of Akt and S6K1 in VSMC in a sustained manner. Blockade of PI3K-Akt-mTOR-S6K1 signaling by LY-294002, and rapamycin s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 65 3 شماره
صفحات -
تاریخ انتشار 2005